426 research outputs found

    Case Report: Senior-Loken syndrome: A novel NPHP5 gene mutation in a family from Kuwait

    Get PDF
    Background: Rare autosomal recessive disorders of variable severity are segregating in many highly consanguineous families from the Arab population. One of these deleterious diseases is Senior-Loken syndrome, a hereditary heterogeneous multiorgan disorder, which combines nephronophthisis with retinal dystrophy, leading to blindness and eventually end stage renal failure. This disorder has been reported in many cases worldwide, including two unrelated families from Arabian Gulf countries, which share the gene pool with Kuwait.Case report: Here, we are reporting two children from an Arab family with a novel frameshift mutation found in IQCB1/NPHP5 gene; c.1241-1242delTC, predicted to cause protein termination p.Leu414HisfsStop4, and describing the associated clinical features.Conclusion: Identification of this pathogenic mutation helped in confirmation of the clinical diagnosis and in providing a proper pre-marital genetic counselling and testing for a couple embarking on marriage from this highly consanguineous high-risk family.Keywords: Arab; Ciliopathy; Consanguinity; Nephronophthisis; Senior-Loken syndrome; Premarital counsellin

    TNF-α induces a pro-inflammatory phenotypic shift in monocytes through ACSL1 : Relevance to metabolic inflammation

    Get PDF
    Background/Aims: TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synthetase 1 (ACSL1) is associated with inflammatory monocytes/macrophages, we investigated the role of ACSL1 in the TNF-α-driven inflammatory phenotypic shift in the monocytes. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with TNF-α. Inflammatory phenotypic markers (CD16, CD11b, CD11c and HLA-DR) expression was determined with real time RT-PCR and flow cytometry. IL-1β and MCP-1 were determined by ELISA. Signaling pathways were identified by using ACSL1 inhibitor, ACSL1 siRNA and NF-κB reporter monocytic cells. Phosphorylation of NF-κB was analyzed by western blotting and flow cytometry. Results: Our data show that TNF-α induced significant increase in the expression of CD16, CD11b, CD11c and HLA-DR. Inhibition of ACSL1 activity in the cells with triacsin C significantly suppressed the expression of these inflammatory markers. Using ACSL-1 siRNA, we further demonstrate that TNF-α-induced inflammatory markers expression in monocytic cells requires ACSL1. In addition, IL-1b and MCP-1 production by TNF-α activated monocytic cells was significantly blocked by the inhibition of ACSL-1 activity. Interestingly, elevated NF-κB activity resulting from TNF-α stimulation was attenuated in ACSL1 deficient cells. Conclusion: Our findings provide an evidence that TNF-α-associated inflammatory polarization in monocytes is an ACSL1 dependent process, which indicates its central role in TNF-α-driven metabolic inflammation. © 2019 The Author(s).Peer reviewe

    An Innovative Approach Towards National Peak Load Management

    Get PDF
    An innovative approach was developed and implemented in eight governmental buildings to reduce their load during the peak demand hours in summer of 2007. The innovative approach implemented in these buildings included pre-closing treatment (PCT) between 13:00 and 14:00 h and time-of-day control (TDC) after 14:00 h for air conditioning (A/C) and lighting systems. PCT realized an overall reduction of 3.43 MW, a saving of 11.7% of the buildings peak power demand; while TDC realized a total savings of 8.67 MW at 15:00 h, a saving of 30.7% of the buildings peak power demand at that hour. The temperature build up inside the buildings due to PCT and TDC was within the acceptable range, which validated the technical viability of these measures. The implementation of the innovative approach in the eight governmental buildings with a total measured peak demand of 29.3 MW achieved a reduction of 8.89 MW. This power is now available to other users leading to financial savings of 13.5millionforthenationtowardsthecostofconstructingnewpowerplantsanddistributionnetworkequipment.Moreimportantly,thisreductioninpeakpowerdemandofwellover3013.5 million for the nation towards the cost of constructing new power plants and distribution network equipment. More importantly, this reduction in peak power demand of well over 30% involved zero or limited expenditure. A nationwide implementation of this innovative approach in all the governmental and institutional buildings is likely to reduce the national peak power demand by 154 MW which amounts to a capital savings of 232 million towards the cost of new power generation equipment and distribution network

    A New Model for Raf Kinase Inhibitory Protein Induced Chemotherapeutic Resistance

    Get PDF
    Therapeutic resistance remains the most challenging aspect of treating cancer. Raf kinase inhibitory protein (RKIP) emerged as a molecule capable of sensitizing cancerous cells to radio- and chemotherapy. Moreover, this small evolutionary conserved molecule, endows significant resistance to cancer therapy when its expression is reduced or lost. RKIP has been shown to inhibit the Raf-MEK-ERK, NFκB, GRK and activate the GSK3β signaling pathways. Inhibition of Raf-MEK-ERK and NFκB remains the most prominent pathways implicated in the sensitization of cells to therapeutic drugs. Our purpose was to identify a possible link between RKIP-KEAP 1-NRF2 and drug resistance. To that end, RKIP-KEAP 1 association was tested in human colorectal cancer tissues using immunohistochemistry. RKIP miRNA silencing and its inducible overexpression were employed in HEK-293 immortalized cells, HT29 and HCT116 colon cancer cell lines to further investigate our aim. We show that RKIP enhanced Kelch-like ECH-associated protein1 (KEAP 1) stability in colorectal cancer tissues and HT29 CRC cell line. RKIP silencing in immortalized HEK-293 cells (termed HEK-499) correlated significantly with KEAP 1 protein degradation and subsequent NRF2 addiction in these cells. Moreover, RKIP depletion in HEK-499, compared to control cells, bestowed resistance to supra physiological levels of H2O2 and Cisplatin possibly by upregulating NF-E2-related nuclear factor 2 (NRF2) responsive genes. Similarly, we observed a direct correlation between the extent of apoptosis, after treatment with Adriamycin, and the expression levels of RKIP/KEAP 1 in HT29 but not in HCT116 CRC cells. Our data illuminate, for the first time, the NRF2-KEAP 1 pathway as a possible target for personalized therapeutic intervention in RKIP depleted cancers

    Downregulation of RKIP Is Associated with Poor Outcome and Malignant Progression in Gliomas

    Get PDF
    Malignant gliomas are highly infiltrative and invasive tumors, which precludes the few treatment options available. Therefore, there is an urgent need to elucidate the molecular mechanisms underlying gliomas aggressive phenotype and poor prognosis. The Raf Kinase Inhibitory protein (RKIP), besides regulating important intracellular signaling cascades, was described to be associated with progression, metastasis and prognosis in several human neoplasms. Its role in the prognosis and tumourigenesis of gliomas remains unclear
    • …
    corecore